
AD-A267 135
TO APPEAR: 12TH SYMPOSIUM ON RELIABLE DISTRIBUTED SYSTEMS. PRINCETON, NJ

OCTOBER 6-8, 1993

Lazy Checkpoint Coordination for Bounding Rollback Propagation

Yi-Min Wang and W. Kent Fuchs I £LECTE
Coordinated Science Laboratory JUL 201993. -

University of Illinois at Urbana-Champaign 0 9

Abstract shown that logging a nondeterministic event equivalently
places a logical checkpoint [18] at the end of the ensuing

In this paper, we propose the technique of lazy check- state interval, and these extra logical checkpoints serve to
point coordination which preserves process autonomy eliminate the domino effect.
while employing communication-induced checkpoint co- Coordinated checkpointing achieves domino-freerecov-
ordination for bounding rollback propagation. The no- ery by sacrificing a certain degree of process autonomy and
tion of laziness is introduced to control the coordination incurring run-time and extra message overhead. Usually,
frequency and allow a flexible trade-off between the cost whenever a checkpoint is initiated by one process, all the
of checkpoint coordination and the average rollback dis- other processes are informed and required to take appro-
tance. Worst-case overhead analysis provides a means for priate checkpoints in order to guarantee the resulting set of
estimating the extra checkpoint overhead. Communication checkpoints is consistent [19-24].
trace-driven simulation for several parallel programs is We will use the term eager checkpoint coordination for
used to evaluate the benefits of the proposed scheme. the coordination action performed when checkpoints are

initiated, as described above. In contrast. processes in a
system with lazy checkpoint coordination only coordinate

1 Introduction their corresponding checkpoints when message communi-

Uncoordinated checkpointing [1-3] for parallel and dis- cation indicates a violation of checkpoint consistency. Bri-
tributedinastems chllkowsmaximtum [p13]roes paut and d atico et al. [25] force the receiver of a message m to take a

tributed systems iallows maximum process autonomy and checkpoint before processing m if the sender's checkpoint
independent design of recovery capability for each pro- interval number tagged on m is greater than that of the
cess. However, in a general nondeterministic execution, receiver. Checkpoints with the same ordinal numbers are
cascading rollback propagation may result in the domino therefore always guaranteed to be consistent. However, the
effect [4] which can prevent progression of the recovery run-time overhead may be high due to the possibly exces-
line. It has been shown that message reordering [5] and sive number of extra induced checkpoints. In this paper, we
message logging [3] can effectively reduce rollback prop- generalize the concept of communication-induced check-
agation. In order to entirely eliminate the possibility of gen t onation- ined c
domino effects, extra checkpoints need to be taken based point coordination by introducing the notion of laziness Zon the communication history. Kim et al. [6] and Venkatesh as a measure of the frequency for performing coordination.
onat. [7]ompnicatioy nhisitivedependencytrackiandiensera Only corresponding checkpoints with ordinal numbers n Z.
et al. [71 employ transitive dependency tracking and insert a where n is an integer, are required to be consistent with each
checkpoint before processing any message that introduces other for bounding rollback propagation. Overhead anal-
a new dependency. Russel [81 proves that, by inserting a ysis shows that our generalization can significantly reduce
checkpoint between every pair of consecutive send and the number of extra checkpoints compared to the previous
receive events (in that order), domino-free recovery is work [25] which corresponds to the case of Z = 1
ensured. The log-based approach [9-17] assumes the piece-
wise deterministic execution model [12] where a process
execution consists of a number of deterministic state inter-
vals, each started by a nondeterministic event. It has been

'This research was supported in part by the Department of the Navy The system considered in this paper consists of a number
and managed hy the Office of the Chief of Naval Research under Contract of concurrent processes for which all process communica-
N00014-91-J-1283, and in part by the National Aeronautics and Space tion is through message passing. Processes are assumed to
Administration (NASA) under Grant NASA NAG 1-613. in cooperation
with the Illinois Computer Laboratory for Aerospace Systems and Soft- run on fail-stop processors [261 and, for the purpose of pre-
ware (ICLASS). __M •if1bT6 iT'' -- sentation, each process is considered an individual recovery

yff vd for pubfot SIG
IDjqtrIJmncwi UnmIlznst*d (

ct I I/ 93900=61II4
_ -- -- 1

unit. In order to allow general nondeterministic execution,
we do not assume a piecewise deterministic model. This
implies whenever the sender of a message rn rolls back
and unsends m, the receiver which has already processed P0 o 4- + +
m must also roll back to undo the effect of m because the
potential nondeterminism preceding the sending of m may P
prevent the same message from being resent during reex- P,

ecution. Let ci,, denote the xth checkpoint (x > 0) of
process pi (0 < i < N - 1), where N is the number of P2 1

processes in the system. Two checkpoints ci, and ci,,, are
then considered inconsistent if there is any message sent af- P3 4 +\+/
ter c,v, and processed before ci,,, or vice versa. In contrast,
when the receiver of a message m' rolls back and unreceives + Checkpoint "N Message
in', the sender needs not roll back to unsend m' if m' can (a)
be retrieved from a message log [3, 11, 12,27] or through a
reliable end-to-end transmission protocol [14,22].

During normal execution, each process periodically and Virtual
independently saves its state as a checkpoint on stable stor- checkpoint
age. The interval between ci,, and ci,,+i is called the xth P I ...---...
checkpoint interval of pi. Each message is tagged with the
current checkpoint interval number and the process ,umber
of the sender, and each receiver pi performs direct depen- P "

dencv tracking [1,28] as follows: if a message sent from
(j, y) is processed in (i, z), the direct dependency of ci.,+l P 3-
on cjy is recorded. Checkpoint graph

A garbage collection procedure can be periodically in-
voked by any process pi. First, pi collects the direct Extended checkpoint graph
dependency information from all the other processes to
construct the checkpoint graph [1] as shown in Fig. 1(b). (b)
Then the rollback propagation algorithm (Fig. 2) is applied Figure 1: Checkpointing and rollback recovery. (a) exam-
to the checkpoint graph to determine the global recovery pie checkpoint and communication pattern; (b) checkpoint
line2 (black vertices), before which all the checkpoints are pix checkpoint graph w henkpoint
obsolete and can be discarded. Alternatively, an optimal graph and extended checkpoint graph when Po initiates a
garbage collection algorithm [29] can be used to minimize
the space overhead by discarding all the garbage check-
points marked "X" in Fig. 1(b). /* CP represents a checkpoint */

When any process initiates a rollback, it starts a similar /* Initially, all the CPs are unmarked */
procedure for recovery. The current volatile states of the Include the latest CP of each process in the root
surviving processes are treated as additional virtual check- set;
points [2] for constructing an extended checkpoint graph Mark all CPs strictly reachable from any CP in
of which the recovery line is called the local recovery line the root set;
(shaded vertices) and indicates the consistent rollback state. While (at least one CP in the root set is marked)

{
Repiace each marked CP in the root set by the

3 Lazy Checkpoint Coordination latest unmarked CP of the same process:
Mark all CPs strictly reachable from any CP r

3.1 Motivation in the root set }

We will refer to the checkpoints initiated independently The root set is the recovery line.

by each process as basic checkpoints and those triggered by Figure 2: The rollback propagation algorithm. K'
2 The global recovery line is to be used when the entire system fails.

while a local recovery line is computed when only a subset of processes -A
becomes faulty.

.. . , ': 'it' on/

•"'' •:,:11lty N0od3E...'D S.I . Avai- ,ndor

101:t speoiaL. -

ti .TA .,

the communication as induced checkpoints. Fig. 3(a) illus-
trates a situation where the communication pattern renders
most of the basic checkpoints useless for rollback recovery
ard the global recovery line stays at the very beginning
of the execution. A straightforward way of avoiding such
possibly unbounded rollback propagation is to perform ea-
ger checkpoint coordination as shown in Fig. 3(b) where
b1,, denotes the xth basic checkpoint of pi. Whenever a Po + 4-

process takes a basic checkpoint, coordination messages
(dotted lines) are broadcast to request the cooperation in
making a consistent set of checkpoints [19]. Let B be the
total number of basic checkpoints and I be the total number P 1 4- 4+ +-_- _+

of induced checkpoints. We define the induction ratio as (a)

I Induced
B "b, 1 checkpoint

which is a measure of the overhead for performing P o I A

communication-induced checkpoint coordination. Clearly,7
eager checkpoint coordination has RZ = N - I and will i
result in large run-time overhead when N is large. In ad-
dition, the N - 1 coordination messages per checkpoint P 1 4- 4 +

session constitute another overhead. b (b) Basic
The large overhead of eager checkpoint coordination re- (b) checkpoint

suits from its pessimistic nature. More specifically, when bh
p, in Fig. 3(b) initiates its first basic checkpoint b1 ,, it Po + 0 . + G M+
"pessimistically" assumes that messages like m1 will exist
in the future and cause b1,I to be inconsistent with its corre-
sponding checkpoint boI on po. In order to guarantee bl1, M
belongs to a useful recovery line, pt "eagerly" requests po's
cooperation at the time bl,l is initiated. In contrast, lazy P (c)
checkpoint coordination adopts an optimistic approach by
assuming that bo,j will be consistent with b1,1. If the as-
sumption turns out to be true, no explicit coordination is b 4± 4o.2

necessary. An extra checkpoint will be induced on pa only
when message ml indicates that the assumption has failed
(Fig. 3(c)). From another point of view, such a scheme
"lazily" delays the broadcast of the coordination messages
and implicitly piggybacks them on future normal messages P I + + + + +

[21]. Both checkpoint and message overhead can therefore b 1.1 b 1.2

be reduced. (d)
However, given a basic checkpoint pattern, the number

of induced checkpoints in the above scheme is determined Figure 3: Communication-induced checkpoint coordina-
by the communication pattern and is not otherwise control- tion. (a) checkpoint and communication pattern; (b) eager
lable. In the worst case, the induction ratio R can still be checkpoint coordination; (c) lazy checkpoint coordination
N - 1 as illustrated in Fig. 3(c). In order to further reduce with laziness = 1; (d) lazy checkpoint coordination with
the overhead, we can perform even "lazier" coordination by laziness = 2.
only enforcing the consistency between checkpoints co,nz
and clnz where Z is again the laziness and n is an inte-
ger. Fig. 3(d) shows the case of Z = 2. No checkpoint is
induced until the message m 2 indicates the inconsistency
between b1,2 and b0, 2. The number of induced checkpoints
is then reduced from 8 to 2 at the cost of potentially larger
rollback distance.

3.2 The Protocol applications, the upper bound on the induction ratio can be
shown to be independent of N.

Our approach is to incorporate lazy checkpoint coordi-
nation into the uncoordinated checkpointing scheme as a 4.1 Worst-Case Analysis
mechanism for bounding rollback propagation. Therefore,
the checkpointing and recovery protocol can be built on top Our approach to worst-case analysis consists of two

of the one described in Section 2. The laziness Z is a prede- steps. First, given any basic checkpoint pattern, we con-

termined system parameter known to all processes. During struct the worst-case communication pattern. Secondly,

normal execution, each process pi maintains a variable V given any system with N processes and laziness Z, we de-

which is initialized to be Z and incremented by Z each rive the worst-case induction ratio as a function of N and Z

time ci,z is taken. When pi at its zth checkpoint interval by considering these worst-case communication patterns.

is about to process a message m tagged with the sender pi's For the purpose of presentation, we assume every check-

checkpoint interval number y > V, pi is forced to take the point c, in a checkpoint and communication pattern 7P

checkpoint ci,tz where I = Ly/ZJ . In other words, if m is associated with a global time stamp t(cr.). For any

was sent after cj,Iz had been taken, it must be processed n, define cz" = c?,Z if t(c?',z) -< t(c P z) for all
by pi after ci,lz is induced. Notice that all the checkpoints 0 < j < N- 1, i.e., c.'Z, denotes the earliest checkpoint
ci ,., with x < w < IZ become dummy checkpoints which #nZ among all processes. Given any basic checkpoint
overlap with ci,iz. pattern and laziness Z, we construct the communication

In addition to the centralized garbage collection pro- pattern Po as follows.3 If cP° O then p2 sends a
,nZ • ci,nz,

cedure as described in Section 2, a simple distributed al- message to every other process pi and induces C, wt
gorithm can also be used for low-cost garbage collection. t(,",O Ptn•) Z wsth

The basic idea is that if the current checkpoint interval with Fig. 4a) sh o a n exapl
number of every process has exceeded nZ, all the check- with Z = 2. We will call the interval between t(c)z)

points cjy with y < nZ become obsolete with respect to and t(cY'.Z) the induction session #n which includes all
the consistent set of checkpoints {c,,nZ : 0 < i < N - I } the induced checkpoints cPOz.
and therefore can be discarded. Each process Pj needs to Since the induction of any checkpoint cP' z (and hence
maintain a checkpointing progress vector CP.progress(N] yy, n

which records the highest checkpoint interval number of cj, l
cannot happen until the first checkpoint #nZ, say rrZ isevery process known to pj based on the information in- canthpe ni h irtcekon nsyc is

evudery proechmess age. Mnw o re basedionth informationi- taken, pi needs to take Z consecutive basic checkpoints by
cluded in each message. More efficient garbage collc- itself in order to reach c , as stated in Property 1.
tion can be achieved by periodically piggybacking the t,,

CP.progress[N] vector on normal messages. PROPERTY 1 If c.,nzZ = cPz, then the Z checkpoints
Although {cinz : 0 < i < N - 1} always forms a- - P , (n - I) Z < x < Z, must be basic checkpointts.

consistent set of checkpoints, the two-phase recovery pro- nmt

cedure described in Section 2 should still be used to search By theconstruction of Po. it is not hard to see that, for any n,
for the local recovery line in order to minimize the num- Po always has the earliest c.'z among all communication
ber of roiled-back processes and the rollback distances. patterns, given the basic checkpoint pattern. (Formalproofs
One possible optimization is that the dependency informa- can be found in the complete technical report [30].) Hence.
tion associated with the garbage checkpoints determined 7Po must possess the largest number of c ',z'S. Since each
locally based on CP-progress[N] needs not be collected, rpnz in P0 also induces the largest possible number (.V -
thus reducing the size of the checkpoint graph. I) of induced checkpoints, the total number of induced

checkpoints in P0 must be the largest and so we have the
following property.4 Overhead Analysis

PROPERTY 2 Given a basic checkpoint pattern, Po is the
Since the checkpoint overhead of the lazy checkpoint co- worst-case communication pattern resulting in the largest

ordination scheme depends on the run-time dynamic com- induction ratio.
munication ?attern, it is important to analyze and estimate
the potential extra overhead resulting from the induced Property 2 states that. for the analysis of worst-case in-
checkpoints. We will first show that, without any con- duction ratio, we only need to consider the communication
straints on the relative checkpointing progress of each pro- 3When it is clear from the context that the basic checkpoint pattern is

cess, the worst-case induction ratio is (N - I)/Z. While fixed, the same notation for the checkpoint and communication pattern
under certain conditions which are typically met by real will also be used to refer to the communication pattern.

cý2 ,much. For example in (b), it is very likely for po to take

"P" + +0 at least one basic checkpoint between t(c.',) and t(C'0).
We will show that under the following constraints which

C: are satisfied in many applications, the upper bound on the
P + + + 4 + induction ratio is independent of N for Z > 2. (For the

case of Z = 1, Fig. 3(c) demonstrates that the worst-case
induction ratio of (N - 1)/Z = N - 1 is always achievable

'c. ,, and cannot be reduced.)

P2
L Induction , Induction Constraint-i: Let Q denote the maximum ratio of anm two

session #1 session #2 basic checkpoint intervals. Although each process is

(a) allowed to take its basic checkpoints at its uwn pace,
c e;,Q is typically bounded by a small constant Q. (For

PO o - 2 4-- example, Q is 2 or 3 for our experiments described in

the next section.)

Constraint-2: Let L be the number of complete induc-
p 1 + 4- 4 ._ tion sessions in Po. The applications employing

checknointing and rollback recovery are usually long-
running programs, which implies Z L is quite large.

P2 + •+ 41• + 41 _In particular, we assume Z. L >> Qj.
PP0

. " 6From Property 1, each induction session must contain
(b) Z consecutive basic checkpoints and hence at least Z - I

Figure 4: (a) Worst-case communication pattern (b) worst- basic checkpoint intervals. Let S denote the following set
of integers

case checkpoint and communication pattern.

S = {m: m (Z - 1)_ Q and mS < fQ}I
pattern Po for each basic checkpoint pattern. Since every For Z > 2, S contains at least one element, namely, [Q].
"Po has well-defined induction sessions as shown in Fig. 4,
theLet M be the minimum element of S. We define an M -

From Property 1, at least Z basic checkpoints are needed session as consisting of M consecutive induction sessions.

to induce at most N - I checkpoints and so we have an approach is based on the observation that within an O-

upper bound on the induction ratio session, every process either takes at least one set of Z

N - 1 consecutive basic checkpoints which defines one of the in-
< (1) duction sessions, or takes at least one basic checkpoint due

to Constraint-I. Since, within an Al-session, the number
It is also the worst-case induction ratio achievable by some of induced checkpoints is 1 . (N - 1) and the number
Po for which an example with Z = 2 and N = 3 is of basic checkpoints is at least N. the upper bound on the
shown in Fig. 4(b). (The stacked checkpoints indicate that induction ratio is independent of N.

POeach dummy checkpoint c°,,_ , overlaps with the induced
'Po THEOREM I Under the above two constraints, the in-

duction ratio R < FQ1 for laziness Z > 2. where Q is the

4.2 The Upper Bound under Constraints maximum ratio of any two basic checkpoint intervals.

The upper bound in Eq. (1) was derived under no Proof. Again we only have to consider Pn for each basic
constraints on the checkpoint and communication pattern, checkpoint pattern. There are L A = [L,/Mj complete M -
Since it is of order O(N), the induction ratio may be unac- sessions, each containing M. (N - I) induced checkpoints.
ceptably high for systems with a large number of processes. We distinguish the following two cases.
However. a closer look at the two patterns in Fig. 4 reveals (a) N < A": From Eq. (I), < v'--- N < .V < f< Q] .
that the situation in (b) which results in the worst-case in- (b) N > 11: First we consider the number of induced
duction ratio is less iikely to happen for applications where checkpoints I. If Z > Q + 1. then .l = I and I =
the basic checkpoint intervals typically do not vp, to L (N - 1). If Z < Q -4 1. Z 7 Q! n Conc:ralt 2

implies L »> Q]. Since M < [Qi, we have LIM > 1; message, each process also checks if it needs to take an
so LM > I and ! L M - (N - 1). In either case, induced checkpoint, as described in Section 3. All reported
I ý-, LM - M - (N - 1). numbers are averaged over five runs.

Now consider the number of basic checkpoints B. For We expect the variation of the basic checkpoint inter-
each induction session #n, the process pi with cT 'Z = val to be small because of the way it is maintained. In
c POmust contribute Z basic checkpoints and therefore particula-, we choose Q = 2 to estimate the induction ra-
the length of each induction session is at least Z - I ba- tio. The exact value of Q foi each program is listed in
sic checkpoint intervals. Within each M-session, at least Table 1. Although Q is slightly greater than 2 for the first
N - M processes do not contain c*z for any n. By the two programs, the numbers listed in the row of "Under-2
definition of Q, these N - M processes must each con- percentage" show that a very high percentage of the ha-

tribute at least mz-1) J basic checkpoints. Therefore, sic checkpoint intervals are covered by Q = 2 which thus
serves as a good approximation. Fig. 5 plots the Q-bounds

B > (Z - 0) against the worst-case and the actual induction ratios for the
B > LM (A . +(N- M L])an fourprograms. It demonstrates that the Q-bound provides a

I Al (N - 1) good estimate of the induction ratio. The large difference in
"B= < Z± L) .___ (2) the ratio between Z = I andZ > 2 confirms that our gener-

M. Z + (N alization of the idea of communication-induced checkpoint

M Z bwhcoordination as described in [25] can significantly reduceSince Z > I and " z' > I by definition, we have
Q - the extra checkpoint overhead.

1 ((N - IL wFig. 6 plots the average rollback distances in terms of
Al < (,/ < (N (3) the number of average basic CPIs for the four programs.

+ (N-M) We use 0.5 for Z = 1 and (Z - 1)/2 for Z > 2 in the
as required. o "'Estimated" curve. Figs. 5 and 6 illustrate that lazy check-

point coordination provides a flexible trade-off between
Combining Eq. (1) (for Z = 1 and Case (a)) and Eq. (2), coordination overhead and recovery efficiency.

we then define the refined upper bound, called the Q-bound,
as follows 6 Summary

Q-bound = A N-Iund= M- Z + [N > MI ((N - M). -AlI) Wehaveproposed thetechniqueof lazy checkpoint coor-
dination and incorporated it into an uncoordinated check-

i Npointing protocol as a mechanism for bounding rollback

propagation. Recovery line progression is guaranteed by

5 Experimental Results performing communication-induced checkpoint coordina-
tion only when the predetermined consistency criterion is

Four parallel programs written in the Chare Kernel lan- about to be violated. The notion of laziness has been in-
guage [31) are used for the communication trace-driven troduced to provide a trade-off between extra checkpoints
simulation. The Chare Kernel has been developed as during normal execution versus the average rollback dis-
a machine-independent message-driven parallel language. tance for recovery. Overhead analysis shows that the upper
Program traces used in this paper are collected from an bound on the induction ratio, i.e., the number of induced
Encore Multimax 510. checkpoints divided by the number of basic checkpoints, is

The four programs include two computer-aided circuit related to the maximum ratio between the basic checkpoint
design applications, Test Generation and Log`- Synthesis, intervals. Communication trace-driven simulation results
and two search applications, Knight Tour and N-Queen. for four parallel programs showed that our analysis can
The execution times are between 25 and 45 minutes (see provide a good estimate of the induction ratio, and that
Table 1). The predetermined minimum basic checkpoint in- lazy checkpoint coordination can significantly reduce the
terval is chosen to be 2 minutes. A variable NextCP-Jime number of induced checkpoints.
is initialized to 2 minutes. Each process checks its local
clock after processing every 100 messages. If the clock Acknowledgement
time exceeds NextCP-Jtme, a basic checkpoint is inserted The authors wish to express their sincere thanks to the
and Next.CPI me is incremented by 2 minutes. The re- anonymous referees for their valuable comments, to B.
suiting average basic checkpoint interval (CPI) for each Ramkumar, K. De and P. Banerjee for their parallel pro-
program is listed in Table 1. Before processing a new grams and to L. V. Kald for access to the Chare Kernel.

graman to . V. Kal fo aces to th Ch Kerel

Table 1: Execution and checkpoint parameters of the parallel programs.

Programs if Test Generation Logic Synthesis Knight Tour N-Queen

Number of processors 8 6 8 6
Execution time (sec) 2,076 1,736 2,436 1,567
Number of messages 28,219 411,733 104,170 25,880

Average basic CPI (sec) 158 140 132 139
Q i 2.17 2.48 1.42 1.55
Under-2 percentage [99.6% 97.0% 100% 100%

References [121 R. E. Strom. D. F. Bacon. and S. A. Yemini. "Volatile logging
in n-fault-tolerant distributed systems," in Proc. IEEE Fault-

[1] K. Tsuruoka, A. Kaneko, and Y. Nishihara, "Dynamic recov- Tolerant Computing Symposium. pp. 44-49, 1988.
cry schemes for distributed processes," in Proc. IEEE 2nd [131 A. P. Sistla and J. L. Welch, "Efficient distributed recovery
Symp. on Reliability in Distributed Software and Database using message logging," in Proc. 8th ACM Symposium on
Systems. pp. 124--130. 198 .Principles of Distributed Computing. pp. 223-238. 1989.

[2] B. Bhargava and S. R. Lian,"Independent checkpointing and [14] D. B. Johnson and W. Zwaenepoel, "Recovery in distributed
concurrent rollback for recovery - An optimistic approach," systems using optimistic message logging and checkpoint-
in Proc. IEEE Symp. on Reliable Distr. Syst., pp. 3-12. 1988. ing,"J. ofAlgorithms. Vol. 11. pp. 462-491. 1990.

[31 Y. M. Wang and W. K. Fuchs. "Optimistic message log- [15] T. T.-Y Juang and S. Venkatesan. "Crash recovery with
ging for independent checkpointing in message-passingsys- little overhead," in Proc. IEEE Int'l Conj on Distributed
tems." in Proc. IEEE Symp. on Reliable Distr Syst.. pp. 147- Computing Sovstems. pp. 454---461. 1991.

154. Oct. 1992.
[41 B. Randel. "System structure for software fault tolerance." [16] E. N. Elnozahyand W. Zwaenepoel. "Manetho: Transparent

IEEE Trans. on Software Engineering, Vol. SE-1, No. 2, rollback-recovery with low overhead, limited rollback and
pp. 220-232. June 1975. fast output commit." IEEE Trans. on Computers. Vol. 41.

pp. 20-22, Jne 175.No. 5. pp. 526-531, May 1992.

[51 Y. M. Wang and W. K. Fuchs, "Scheduling message pro-

cessing for reducing rollback propagation," in Proc. IEEE [17] B. H. L. Alvisi and K. Marzullo. "Nonblocking and orphan-

Fault-Tolerant Computing Symposium, pp. 204-211, July free message logging protocols. in Proc. IEEE Fault.

1992. Tolerant Computing Symposium. pp. 145-154. 1993.

[61 K. H. Kim. J. H. You, and A. Abouelnaga, "A scheme for [18] Y M. Wang, Y. Huang, and W. K. Fuchs. "Progressive retry

coordinated execution of independently designed recover- for software error recovery in distributed systems." in Proc.

able distributed processes." in Proc. IEEE Fault-Tolerant IEEE Fault-Tolerant Computing Symposium. pp. 138-144.

Computing Symposium. pp. 130-135, 1986. June 1993.

[7] K. Venkatesh. T. Radhakrishnan. and H. F. Li, "Optimal [19] K. G. Shin and Y-H. Lee. "Evaluation of error recovery

checkpointing and local recording for domino-free rollback blocks used for cooperating processes," IEEE Trans. on

recovery," Information Processing Letters, Vol. 25. pp. 295- Software Engineering, Vol. 10. No. 6. No. 6. pp. 692-700.

303, July 1987. 1984.

[91 D. L. Russel. "State restoration in systems of communicating [201 K. M. Chandy and L. Lamport, "Distributed snapshots: De-
processes," IEEE Trans. on Software Engineering. Vol. SE- termining global states of distributed systems." ACM Trans.

6. No. 2, pp. 183-194. Mar. 1980. on Computer Systems, Vol. 3, No. 1. pp. 63-75. Feb. 1985.

[91 A. Borg. J. Baumbach, and S. Glazer. "A message system [211 T. H. Lai and T. H. Yang. "On distributed snapshots." In-
supporting fault-tolerance." in Proc. 9th ACM Symp. on formation Processing Letters, Vol. 25. pp. 153-158. May

Operating Systems Principles, pp. 90-99. 1983. 1987.

[101 M. L. Powell and D. L. Presotto, "Publishing: A reliable [22] R. KooandS. Toueg, "Checkpointing and rollback-recovery
broadcast communication mechanism," in Proc. 9th ACM for distributed systems," IEEE Trans. on Software Engineer-
Symp. on Operating Systems Principles, pp. 100-109, 1983, ing, Vol. SE- 13, No. 1. pp. 23-3 1, Jan. 1987.

Illl R. E. Strom and S. Yemini. "Optimistic recovery in dis- [231 K. Li, J. F Naughton, and 1. S. Plank. "Checkpointing mul-
tributed systems."A CM Trans. on Computer Systems. Vol. 3. ticomputer applications." in Proc. IEEE Svmp. on Reliable
No. 3. pp. 204-226, Aug. 1985. Distr Svst., pp. 2-1I, 1991.

Average 2.5
Induction 7 1 1 rollback Estimated ----

ratio ditac 2 Test Generation --Worst case -0- Logic Synthesis -El--

5 - Q-bound - Knight Tour --X--
4 Result -B-- 1.5 N-Queen -.-

3 ,

2 " ...'- .. 1.

0 1 -'- 0.5
1 2 3 4 Laziness 5

(a) Test Generation 0
1 2 3 4 5

Laziness
Induction 7

ratio 6 W caseFigure 6: Average rollback distance (number of average
rWorst case -- basic CPIs) as a function of laziness.u :E1ag-5,N Q-bound -+-- "

4Result -BD--

3 M t- [24] M. F. Kaashoek, R. Michiels, H. E. Bal. and A. S. Tanen-
"2 ",baum, "Transparent fault-tolerance in parallel Orca pro-

. , .. grams," Tech. Rep. IR-258, Vrije Universiteit, Amsterdam,
0 -. Oct. 1991.

1 2 3 4 5 [25] D. Briatico. A. Ciuffoletti, and L. Simoncini, "A distributed
Laziness domino-effect free recovery algorithm," in Proc. IEEE 4th

(b) Logic Synthesis Symp. on Reliability in Distributed Software and Database

Systems, pp. 207-215, 1984.
Induction 7 r [26] R. D. Schlichting and F B. Schneider. "Fail-stop proces-

ratio 61 W t csors: An approach to designing fault-tolerant computing
5 Q-bound - systems,"ACM Trans. on ComputerSystems. Vol. 1. No. 3.
4 Result -E)-- pp. 222-238, Aug. 1983.

"3 ,• [27] A. Borg, W. Blau, W. Graetsch, F. Herrmann, and W. Oberle.
"Fault tolerance under UNIX." ACM Trans. on Computer

2 "' Systems, Vol. 7, No. 1. pp. 1-24, Feb. 1989.

I" -- . . z-. [28] Y. M. Wang, A. Lowry, andW. K. Fuchs, "Consistent global
0 checkpoints based on direct dependency tracking." Research

2 3 4 Laziness Report RC 18465, IBM TJ. Watson Research Center, York-

(c) Knight Tour town Heights, New York, Oct. 1992.

[29] Y M. Wang, P. Y Chung, 1. J. Lin, and W. K. Fuchs, "Check-
Induction 7 •point space reclamation for independent checkpointing in

ratio 6 message-passing systems." Tech. Rep. CRHC-92-06, Coor-
Worst case -'- dinated Science Laboratory, University of Illinois at Urbana-

54 Q-bound -i--- Champaign, 1992.

[30] Y M. Wang and W. K. Fuchs, "Lazy checkpoint coordination
3• -for bounding rollback propagation." Tech. Rep. CRHC-92-
2 " '26, Coordinated Science Laboratory, University of Illinois

at Urbana-Champaign, 1992.
0 " " - . .- [311 W. Shu and L. V. Kal, "Cha-e kernel - A untime sup-

1 2 3 4 5 port system for parallel computations," J. Parallel and Dis-
Laziness tributed Computing, Vol. 11. pp. 198-211. 1991.(d) N-Queen

Figure 5: Checkpoint coordination overhead (induction
ratio) as a function of laziness.

